智能电网应用和需求的八大优先领域


NIST刚刚颁布了美国智能电网发展框架和路线图1.0(最终版)。该标准提出了智能电网应用和需求的八个优先发展领域,包括六个功能需求以及通信和计算安全的要求。它们是:    

1) Wide-area situational awareness: Monitoring and display of power-system components and performance across interconnections and over large geographic areas in near real time. The goals of situational awareness are to understand and ultimately optimize the management of power-network components, behavior, and performance, as well as to anticipate, prevent, or respond to problems before disruptions can arise.
2) Demand response and consumer energy efficiency: Mechanisms and incentives for utilities, business, industrial, and residential customers to cut energy use during times of peak demand or when power reliability is at risk. Demand response is necessary for optimizing the balance of power supply and demand.
3) Energy storage: Means of storing energy, directly or indirectly. The significant bulk energy storage technology available today is pumped hydroelectric storage technology. New storage capabilities—especially for distributed storage—would benefit the entire grid, from generation to end use.
4) Electric transportation: Refers, primarily, to enabling large-scale integration of plug-in electric vehicles (PEVs). Electric transportation could significantly reduce U.S. dependence on foreign oil, increase use of renewable sources of energy, and dramatically reduce the nation’s carbon footprint.
5) Cyber security: Encompasses measures to ensure the confidentiality, integrity and availability of the electronic information communication systems and the control systems necessary for the management, operation, and protection of the Smart Grid’s energy, information technology, and telecommunications infrastructures.
6) Network communications: The Smart Grid domains and subdomains will use a variety of public and private communication networks, both wired and wireless. Given this variety of networking environments, the identification of performance metrics and core operational requirements of different applications, actors, and domains—in addition to the development, implementation, and maintenance of appropriate security and access controls—is critical to the Smart Grid.
7) Advanced metering infrastructure (AMI): Currently, utilities are focusing on developing AMI to implement residential demand response and to serve as the chief mechanism for implementing dynamic pricing. It consists of the communications hardware and software and associated system and data management software that creates a two-way network between advanced meters and utility business systems, enabling collection and distribution of information to customers and other parties, such as the competitive retail supplier or the utility itself. AMI provides customers real-time (or near real-time) pricing of electricity, and it can help utilities achieve necessary load reductions.
8) Distribution grid management: Focuses on maximizing performance of feeders, transformers, and other components of networked distribution systems and integrating with transmission systems and customer operations. As Smart Grid capabilities, such as AMI and demand response, are developed, and as large numbers of distributed energy resources and plug-in electric vehicles (PEVs) are deployed, the automation of distribution systems becomes increasingly more important to the efficient and reliable operation of the overall power system. The anticipated benefits of distribution grid management include increased reliability, reductions in peak loads, and improved capabilities for managing distributed sources of renewable energy.

全文见NIST网站:

http://www.nist.gov/public_affairs/releases/smartgrid_interoperability_final.pdf