纳米技术在医学上的应用
随着纳米技术的发展,在医学上该技术也开始崭露头脚。研究人员发现,生物体内的RNA蛋白质复合体,其线度在15~20nm之间,并且生物体内的多种病毒,也是纳米粒子。10nm以下的粒子比血液中的红血球还要小,因而可以在血管中自由流动。如果将超微粒子注入到血液中,输送到人体的各个部位,作为监测和诊断疾病的手段。科研人员已经成功利用纳米 SiO2 微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。另外,利用纳米颗粒作为载体的病毒诱导物已经取得了突破性进展,现在已用于临床动物实验,估计不久的将来即可服务于人类。
研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。这样,在不久的将来,被视为当今疑难病症的爱滋病、高血压、癌症等都将迎刃而解,从而将使医学研究发生一次革命。
纳米技术在分子组装方面的应用
纳米技术的发展,大致经历了以下几个发展阶段:在实验室探索用各种手段制备各种纳米微粒,合成块体。研究评估表征的方法,并探索纳米材料不同于常规材料的特殊性能。利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料。目前主要是进行纳米组装体系、人工组装合成纳米结构材料的研究。虽然已经取得了许多重要成果,但纳米级微粒的尺寸大小及均匀程度的控制仍然是一大难关。如何合成具有特定尺寸,并且粒度均匀分布无团聚的纳米材料,一直是科研工作者努力解决的问题。目前,纳米技术深入到了对单原子的操纵,通过利用软化学与主客体模板化学,超分子化学相结合的技术,正在成为组装与剪裁,实现分子手术的主要手段。科学家们设想能够设计出一种在纳米量级上尺寸一定的模型,使纳米颗粒能在该模型内生成并稳定存在,则可以控制纳米粒子的尺寸大小并防止团聚的发生。
1992年,Kresge等首次采用介孔氧化硅材料为基,利用液晶模板技术,在纳米尺度上实现有机/无机离子的自组装反应。其特点是孔道大小均匀,孔径可以在5~10nm内连续可调,具有很高的比表面积和较好的热稳定性。使其在分子催化、吸附与分离等过程,展示了广阔的应用前景。同时,这类材料在较大范围内可连续调节其纳米孔道结构,可以作为纳米粒子的微型反应容器。
Wagner等利用四硫富瓦烯的独特的氧化还原能力,通过自组装方式合成了具有电荷传递功能的配合物分子梭,具有开关功能。Attard等利用液晶作为稳定的预组织模板,利用表面活性剂对水解缩聚反应过程和溶胶表面进行控制,合成了六角液晶状微孔SiO2材料。Schmid等利用特定的配位体,成功地制备出均匀分布的由55个Au原子组成的金纳米粒子。据理论预测,如果以这种金纳米粒子做成分子器件,其分子开关的密度将会比一般半导体提高105~106倍。
1996年,IBM公司利用分子组装技术,研制出了世界上最小的"纳米算盘",该算盘的算珠由球状的C60分子构成。美国佐治亚理工学院的研究人员利用纳米碳管制成了一种崭新的"纳米秤",能够称出一个石墨微粒的重量,并预言该秤可以用来称取病毒的重量。
李彦等以六方液晶为模板合成了CdS纳米线,该纳米线生长在表面活性剂分子形成的六方堆积的空隙水相内,呈平行排列,直径约1~5nm。利用有机表面活性剂作为几何构型模板剂,通过有机/无机离子间的静电作用,在分子水平上进行自组装合成,并形成规则的纳米异质复合结构,是实现对材料进行裁减的有效途径。
纳米技术在其它方面的应用
利用先进的纳米技术,在不久的将来,可制成含有纳米电脑的可人-机对话并具有自我复制能力的纳米装置,它能在几秒钟内完成数十亿个操作动作。在军事方面,利用昆虫作平台,把分子机器人植入昆虫的神经系统中控制昆虫飞向敌方收集情报,使目标丧失功能。
利用纳米技术还可制成各种分子传感器和探测器。利用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等仿生纳米材料。将药物储存在碳纳米管中,并通过一定的机制来激发药剂的释放,则可控药剂有希望变为现实。另外,还可利用碳纳米管来制作储氢材料,用作燃料汽车的燃料"储备箱"。利用纳米颗粒膜的巨磁阻效应研制高灵敏度的磁传感器;利用具有强红外吸收能力的纳米复合体系来制备红外隐身材料,都是很具有应用前景的技术开发领域。
纳米材料及其光学特性
美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman在1959年曾经说过:“如果有一天能按人的意志安排一个个原子和分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。
纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。
1 纳米材料的分类和结构
根据不同的结构,纳米材料可分为四类,即:纳米结构晶体或三维纳米结构;二维纳米结构或纤维状纳米结构;一维纳米结构或层状纳米结构和零维原子簇或簇组装。纳米材料的分类如图表1所示。纳米材料包括晶体、赝晶体、无定性金属、陶瓷和化合物。
维数
标记
典型合成法
三维
晶体
气体凝结
机械合金
二维
纤维状
化学气相沉积
一维
层状
气相沉积
电沉积
零维
簇
溶胶-凝胶
表1 纳米材料分类
纳米材料的光学性质
纳米材料在结构上与常规晶态和非晶态材料有很大差别,突出地表现在小尺寸颗粒和庞大的体积百分数的界面,界面原子排列和键的组态的较大无规则性。这就使纳米材料的光学性质出现了一些不同于常规材料的新现象。
纳米材料的光学性质研究之一为其线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,主要集中在纳米氧化物、氮化物和纳米半导体材料上,如纳米Al2O3、Fe2O3、SnO2中均观察到了异常红外振动吸收,纳米晶粒构成的Si膜的红外吸收中观察到了红外吸收带随沉积温度增加出现频移的现象,非晶纳米氮化硅中观察到了频移和吸收带的宽化且红外吸收强度强烈地依赖于退火温度等现象。对于以上现象的解释基于纳米材料的小尺寸效应、量子尺寸效应、晶场效应、尺寸分布效应和界面效应。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。
半导体硅是一种间接带隙半导体材料,在通常情况下,发光效率很弱,但当硅晶粒尺寸减小到5nm或更小时,其能带结构发生了变化,带边向高能态迁移,观察到了很强的可见光发射。研究纳米晶Ge的光致发光时,发现当Ge晶体的尺寸减小到4nm以下时,即可产生很强的可见光发射,并认为纳料晶的结构与金刚石结构的Ge 不同,这些Ge纳米晶可能具有直接光跃迁的性质。Y.Masumato发现掺CuCl纳米晶体的NaCl在高密度激光下能产生双激子发光,并导致激光的产生,其光学增益比CuCl 大晶体高得多。不断的研究发现另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,当它们的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光观象。纳米材料的特有发光现象的研究目前正处在开始阶段,综观研究情况,对纳米材料发光现象的解释主要基于电子跃迁的选择定则,量子限域效应,缺陷能级和杂质能级等方面。
纳米材料光学性质研究的另一个方面为非线性光学效应。纳米材料由于自身的特性,光激发引发的吸收变化一般可分为两大部分:由光激发引起的自由电子-空穴对所产生的快速非线性部分;受陷阱作用的载流子的慢非线性过程。其中研究最深入的为CdS纳米微粒。由于能带结构的变化,纳米晶体中载流子的迁移、跃迁和复合过程均呈现与常规材料不同的规律,因而其具有不同的非线性光学效应。
纳米材料非线性光学效应可分为共振光学非线性效应和非共振非线性光学效应。非共振非线性光学效应是指用高于纳米材料的光吸收边的光照射样品后导致的非线性效应。共振光学非线性效应是指用波长低于共振吸收区的光照射样品而导致的光学非线性效应,其来源于电子在不同电子能级的分布而引起电子结构的非线性,电子结构的非线性使纳米材料的非线性响应显著增大。目前,主要采用Z-扫找(Z-SCAN)和DFWM技术来测量纳米材料的光学非线性。
此外,纳米晶体材料的光伏特性和磁场作用下的发光效应也是纳米材料光学性质研究的热点。通过以上两种性质的研究,可以获得其他光谱手段无法得到的一些信息。
结束语
总之,纳米材料具有体材料不具备的许多光学特性。已有的研究表明,利用纳米材料的特殊光学性质制成的光学材料将在日常生活和高科技领域内具有广泛的应用前景。例如纳米SiO2光学纤维对波长大于600nm的光的传输损耗小于10dB/km,此值比SiO2体材料的光传输损耗小许多倍。纳米红外反射材料在灯泡工业上有很好的应用前景。利用纳米材料对紫外的吸收特性而制作的日光灯管不仅可以减少紫外光对人体的损害,而且可以提高灯管的使用寿命。此外,我们的研究结果表明,作为光存储材料时,纳米材料的存储密度明显高于体材料。综上所述,尽管纳米材料光学特性的研究已取得了不少进展,对其光学特性的应用也取得了一定的成绩,但还有许多问题需要继续深入系统地研究,如纳米材料不同于体材料的吸收、拉曼、发光等特性产生的理论根源和上述特性的理论研究,纳米材料的非线性强度如何在受限条件下随颗粒尺寸变化,如何通过表面修饰来获得所具有一定光学特性的纳米材料等。另外,所研究的纳米材料的范围也不够广泛,纳米材料的应用研究还刚刚开始。总之,纳米材料光学特性的研究及应用仍然十分欠缺。纵观纳米材料光学特性的研究概况,我们认为纳米材料光学特性研究的主要方向为:通过纳米材料各种谱学方面的研究,探讨和揭示纳米材料结构上的特点,如不连续能带结构,杂质能级等,建立模型,从理论上探讨其光学特性产生的根源;树立“功能”意识,利用诸如表面修饰手段,通过人工合成,以获得具有特殊性能和用途的纳米复合材料